Bifurcation in kinetic equation for interacting Fermi systems.

نویسنده

  • Klaus Morawetz
چکیده

The recently derived nonlocal quantum kinetic equation for dense interacting Fermi systems combines time derivatives with finite time stepping known from the logistic mapping. This continuous delay differential equation is a consequence of the microscopic delay time representing the dynamics of the deterministic chaotic system. The responsible delay time is explicitly calculated and discussed for short-range correlations. As a novel feature oscillations in the time evolution of the distribution function itself appear and bifurcations up to chaotic behavior occur. The temperature and density conditions are presented where such oscillations and bifurcations arise indicating an onset of phase transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas

The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.    

متن کامل

0 Dispersive effects in neutron matter superfluidity

The explicit energy dependence of the single particle self-energy (dispersive effects), due to short range correlations, is included in the treatment of neutron matter superfluidity. The method can be applied in general to strong interacting fermion systems, and it is expected to be valid whenever the pairing gap is substantially smaller than the Fermi kinetic energy. The results for neutron ma...

متن کامل

Kinetic equation for dilute, spin-polarized quantum systems

2014 A kinetic equation, which includes the effects of degeneracy, is derived for dilute, polarized systems by the Green’s function method of Kadanoff and Baym. When the Born approximation is used for the self-energy, the equation reduces to a result due to Silin. In the Boltzmann limit our result is equivalent to the equation of Lhuillier and Laloë, with the addition of a mean-field drift term...

متن کامل

Formation of vortices in a dense Bose-Einstein condensate

A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond Thomas-Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive a generalized non-linear Schrödinger equation with kinetic term for the rotating condensate. In comparison with previous calculations, based on Thomas-Fermi approximation, significant improveme...

متن کامل

Functional derivative of the kinetic energy functional for spherically symmetric systems.

Ensemble non-interacting kinetic energy functional is constructed for spherically symmetric systems. The differential virial theorem is derived for the ensemble. A first-order differential equation for the functional derivative of the ensemble non-interacting kinetic energy functional and the ensemble Pauli potential is presented. This equation can be solved and a special case of the solution p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2003